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ABSTRACT

We provide a map O -- 7re which associates each finite subset 0 C C' with a polynomial space
7re from which interpolation to arbitrary data given at the points in 0 is possible and uniquely
so. Among all polynomial spaces Q from which interpolation at 0 is uniquely possible, our ire
is of smallest degree. It is also D- and scale-invariant. Our map is monotone, thus providing a
Newton form for the resulting interpolant. Our map is also continuous within reason, allowing us to
interpret certain cases of coalescence as Hermite interpolation. In fact, our map can be extended to
the case where, with each 0 E 0, there is associated a polynomial space P9 , and, for given smooth

a polynomial q E Q is sought for which

p(D)(f - q)(O) = 0, Vp E Pe, 0 E 0.

We obtain ire as the "scaled limit at the origin" (expe)I of the exponential space expe with
frequencies 0, and base our results on a study of the map H -+ H1 defined on subspaces H of
the space of functions analytic at the origin. This study also allows us to determine the local
approximation order from such H and provides an algorithm for the construction of H, from any
basis for H.
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On multivariate polynomial interpolation
Carl de Boor & Amos Ron

-~ 1. Introduction

The gener tion of urivariate polynomial interpolation to the multivariate context is made
difficult b e fact that one has to decide just which of the many of its pice properties to preserve,
as it i mpossible to preserve them all. Particularly annoying is the fact that the dimenions of
stan ard multivariate polynomial spaces, such as 7rk, make up only a .small subset of hence
w cannot hope to interpolate uniquely at an arbitrary pointset, R C8  from an appropriate

Further, even when we have dim rk points at hand, they may fail to be total for Tiehce
interpolation at these points from 4Fr may still not be possible. (k -

For these reasons, generalizations have stressed some aspects of polynomial interpolation and
ignored others. For example, there are various efforts (see, e.g., [CY], (GM]) to identify finite
sets E for which it is easy to construct polynomial Lagrange functions, i.e., polynomials pe with

po(r) = 6o,,. Except for special circumstances, it is usually hard to ascertain the degree of the
resulting interpolant or the maximal k for which irk lies in the range of this interpolant. A totally
different effort, associated with the name Kergin (see [K], [M]), retains the fact that, with an
arbitrary set 0 of cardinality k + 1, we interpolate from irk. The additional degrees of freedom
available in a multivariate context Kergin disposes of in such a way that 'natural' meanvalue
theorems continue to hold.

In this paper, we take a different tack. Given any finite set E, we determine a corresponding

polynomial space ire from which interpolation at O is 'correct', i.e., is possible and uniquely so.
We show that ire is translation- and scale-invariant, and that it is a polynomial space of least
degree from which interpolation at O is correct. We also show that the resulting map O - ire
is monotone (as a map from sets to sets), making it natural to introduce a Newton form for the
resulting interpolant. Further, we show that the map can be extended in a natural way to Hermite
interpolation, where we allow some of the 6 to coalesce.

In fact, given arbitrary finite-dimensional polynomial spaces P9, we provide such a polynomial
space of least degree from which "generalized Birkhoff-Hermite" interpolation is correct, i.e., over
which the linear space spanned by the linear functionals of the form [9]p(D), with p E P,9 and

0 E 0, is minimally total. Here, [0]f := f(0), and, to recall, a space A of linear functionals is total
for H if the only h E H for which Ah = 0 for all A E A is h = 0.

The following notation and terminology will be used throughout. The collection of all poly-
nomials on C' (or whatever other space the context might indicate) is denoted by 7r; irk denotes
the collection of all those polynomials of (total) degree < k, i.e., irk := span (Wa) I1<k' with
()a x '-. x1. We also find it convenient to use lr<k for the space of polynomials of degree < k.

For any p E 7r, we denote by p(D) the corresponding constant coefficient differential operator; in
particular, D' := r-j(Dj) (W), with Dj differentiation with respect to the jth argument. We make

good use of the representation of the linear functional [8]p(D) on ir as q -+ p*E'q = q*(esp), with

q*p := (q(D)p)(O) = E Daq(0)D'p(O)/a!,

with ee : x - exp((8, x)), and with E the shift, i.,-, Eef -= f(. 4- 0). We also use thc "least term"
of a function f analytic at the origin, i.e., the homogeneous polynomial fj of largest degree j for
which f(x) = fi(x) + o(Jlxl'j ) as x --- 0. This notion makes (formal) sense on the larger space of
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formal power series, as does the notion of a D-invariant subspace, i.e., a subspace invariant under
differentiation.

The paper is laid out as follows. After a short discussion of basic properties of the "leading
term" ft and the "least term" fl of f, we show in Section 3 that, for any finite-dimensional space
H of sufficiently smooth functions, H1 := span{f i : f E H} is a scale-invariant polynomial space
of the same dimension as H which determines the "local approximation order" from H. We also
establish other properties of H1, such as the fact that PT(D)H I C (p(D)H)1, of use later, and
explore H1 for the space H = expe spanned by the exponentials ee, 0 E 0. Section 4 is devoted to
the important observation that, among all polynomial spaces P for which the corresponding space
-* := {-r : p E P} of linear functionals is minimally total for H, H 1 is of least degree in the

sense that, for all j, dim(P n 7rj) _ dim(HI n 7rj). The resulting linear projector given by H and
is exploited in Section 5 in the derivation of an algorithm for the construction of Hi from any

basis for H. The dependence of Hi on H is explored in Section 6; the main result is that the map
H F-+ H, is continuous at H if and only if, for some m, 7r<m C H, C 7rm, a property of H which
we term "regular", for want of a better word.

The remainder of the paper is devoted to the specific choice H - e e9P of exponentials.
The fact that its least part HI supplies correct conditions for interpolation from H is used in
Section 7 to conclude by duality, as in [DR], that it is possible to interpolate, and uniquely so, from
the polynomial space H, using the interpolation conditions [O]p(D),p E P9,O E 0. The special
case P9 = lro, all 0, leads in Section 8 to Lagrange interpolation from ire := (expe) 1, witiL the
algorithm from Section 5 providing information needed for the Newton form for the interpolant.
The connection between coalescence of such interpolation points and osculatory interpolation is
explored in the final section.

In a subsequent paper, we verify that various forms of multivariate Lagrange interpolation now
in the literature are special cases of the scheme proposed here. In a different paper, we use H4 to
simplify and extend results from box spline and exponential box spline theory.

2. The least term of an analytic function

We denote by PT the leading term of the polynomial p. For p $ 0, this is the (unique)
homogeneous polynomial for which

deg(p - PT) < degp.

For completeness, we take the zero polynomial to be its own leading term. We note that (Pq)T =
p1qT.

We also single out the least term f, (read 'f least') of a polynomial or, more generally, a
function f analytic at the origin, and mean by this

fh := Tjf,

with j the smallest integer for which Tjf 3 0, with Tjf the Taylor polynomial of degree < j for f
at the origin, i.e.,

(2.1) Tif : jo D°f (0),

and with a' : x - xe/a! the normalized power function. For completeness, we take the zero
function to be its own least term. We note that

(2.2) (fg) = figi
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and that, for any invertible matrix A,

(2.3) (f o A), = fl o A.

We are interested in fl because it describes the behavior of f near the origin. Precisely, f, is
the homogeneous polynomial of largest degree j for which

(2.4) f(x) = f1(x) + o(jjxjl ) as x -* 0.

Consequently, with j := deg fl,

(2.5) f, limf(t)/t,

in the pointwise sense, as follows readily from L'H6pital's rule. In fact, (2.5) remains true if we
take the limit in the sense of formal power series, i.e., in the sense that, for all a,

[0]D'fl = lim [O](DO'f)(t.)1tj .

3. The limit at the origin of a space of functions analytic there

In this section, we consider subspaces of the space

Ao

of all functions analytic at the origin, with the topology of formal power series. For any subspace
H of A 0 , we consider its "limit at the origin", i.e. (with (2.5)), the polynomial space

(3.1) HI := span{f i : f E H}.

We note that HI is scale-invariant since it is spanned by homogeneous polynomials.
We were led to H1 in the analysis of the local approximation order from H. By definition,

this is the largest integer d for which, for every f E C'(nR8 ), there exists h E H so that

(f - h)(x) = O(11X11 ) as x - 0.

The following lemma is of use in the discussion of approximation order.

(3.2) Lemma. If lr<k C H1, then there exists a continuous linear projector Tkg on Ao into H
for which TkTk,H = Tk.

Proof: If 7r<k C H1, then, for each IJa < k, there exists f, E H with (f,)j = ,J. It follows
that the matrix (Dcf,0(0))lJ,J<k is unit triangular, hence invertible. This implies that we can
find (g9,)1aJ<k in H dual to (f - Daf(O))loi<k (i.e., satisfying Dcgo(O) = and this implies
that, for each f E A0 , h := Tk,Hf : gD'f(0) is in H and satisfies Tkh = Tkf.
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(3.3) Corollary. The local approximation order of a finite-dimensional subspace H of A0 equals
the largest integer d for which 7r<d C H1 .

Proof: Let d be the local approximation order from H.
Having (f-h)(x) = O(IIXIId) as x -- 0 is the same as having deg(f- h) > d. If, in particular,

f E lr<d, then this can only happen if h, = fl. Since r<d = (lr<d)j, this shows that lr<d C H 1.
Conversely, if 7r<k C HI, then, by the lemma, there is a linear map Tk,H into H with Tk(1 -

Tk,H) = 0. This implies that, for any f E A 0 , h := Tk,Hf is in H and satisfies (f-h)(x) = O(IIXI1k),
hence d > k. 4

Further study of H led us to the results on polynomial interpolation to be detailed in subse-
quent sections. In preparation, we now discuss various properties of Hj.

Let H be a finite-dimensional subspace of Ao. We observe that, for f E H, deg f± = j if and
only if f E (kerH Tj)\(kerH Tj+I), i.e., if and only if fI E Tj+i(kerH Tj)\O, with

(3.4) kerH Tj := ker(TjIH).

Since also
H = kerH To kerH T1 2 kerH T2 ;? -..

hence
dim Tj+I(kerH Tj) - dim kerH Tj - dim kerH Tj+1 ,

we conclude that
00 

00

H, - ZTj+(kerHTj)= @Tj+l (kerH Tj)
j=0 j=0

and

k

dim(H n r) = Zdim kerH Tj - dim kerH Tj+I = dim kerH To - dim kerH Tk+1 = dim Tk+l (H).
j=o

We have proved:

(3.5) Proposition. HI is a scale-invariant space of polynomials of the same dimension as H. In
fact, for every j,

(3.6) dim(H1 n r<j) = dim Tj(H).

Also, (HI), = HI, and (TjH)1 = I, for all sufficiently large j, and H = H, in case H is a
scale-invariant polynomial space.

For the particular space H := span (1 + O1'°,0°'1), one computes that H = span (1,0 ° 1)0
H = T 2 (H), thus illustrating that Tj(H) and H1 n r<j need not be equal in general (even though
they are always of the same dimension).

Next, consider the effect of multiplying all the elements of H by some f E Ao, i.e., the
relationship between H and

fH := {fgj g C H}.

We deduce from (2.2) the following observation.
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(3.7) Proposition. For any f E Ao satisfying f(0) 0 0,

(fH), = HI.

The interaction of differentiation with the map H '-+ HI is determined by the fact that, for
any p E ir and any f E AO,

(3.8) p(D)f = pT(D)f 1 + terms of higher degree.

This implies that (p(D)f)1 = PT(D)f, in case pT(D)fI 5 0 and so proves the following.

(3.9) Proposition. For every p E ir,

(3.10) pl(D)HI C (p(D)H)I .

(3.11) Corollary. Ifp(D) annihilates H, then pt(D) annihilates H I.

(3.12) Corollary. If H is D-invariant, then so is HI.

Proof. For every y E IRE, we have D,(HI) C (DyH), by (3.9)Proposition, while (DyH)i C Hi
since DYH C H by assumption. 4

If H consists of functions analytic on some domain G, then it makes sense to consider the
"limit of H at z" for any z E G. If H is D-invariant, hence translation-invariant, we expect all
these limits to coincide. The Corollary confirms this expectation.

As an example, consider the space

(3.13) expe := span{ee :0 E 0}

of simple exponentials with frequencies 0. Here and below,

eo: x - exp((0,x)).

Since expo is D-invariant, its limit at any point is just (expe)1 . For its construction, we can
proceed as follows. Define

paJ :=
OEo

with (0.)J : Xt+ (0,x/J I/j!.

Then

(3.14) 7re := (expe)l = Paj : p,,i = 0 for i < j}.

The D-invariance of iro can also be seen directly, as follows: For y E IR, D PaJ = Pay,-1, with
ay := (a(9)(0,y))IEO . Hence if p,,i = 0 for all i < j, then Pay,i-i = Dypa,i = 0 for all i- I < j - 1,
therefore Dypa,j E 7re if Pa,j E re.

4. The dual of H

As it turns out, the construction of Hi can be carried out by a bootstrap procedure which
uses interpolation from H. For this reason (and others), we now show that the dual of H can be
represented by H I.

Abstractly, interpolation from H can be described as the task of finding, for given f E A 0 , an
h E H for which Ah = Af for all A in some linear space A of linear functionals on A0. We call A the
(space of) interpolation conditions for this particular interpolation problem. We call the problem
correct if there is, for each f, exactly one solution h.

For completeness, we recall (without proof) the following well known characterizations of

correctness.
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(4.1) Lemma. Let H and A be finite-dimensional linear subspaces of a linear space X (over C)
and its dual, respectively. Then the following are equivalent.
(i) The interpolation problem given by H and A is correct.
(ii) With (Aj)n any basis for A, the linear map H _ Cn : h -. (Ah)n is cne-one and onto.
(iii) A is minimally total for H.
(iv) A can be used to represent th. dual H' of H in the sense that the map A -/ H A ' AIH is
one-one and onto.

If the interpolation problem given by H and A is correct, then it defines a linear projector,
P := PH,A say, by the rule that, for any f, Pf E H and \Pf = Af for all A E A. We will be
interested later in the dependence of PH,A on H and A. For this, we remark that P can be written
in the form

P = V(MV)-M,

with V any coordinate map for H (i.e., V C" - H: a '-4 E2 vja(j) for some basis (vj) for H),
and M the dual of any coordinate map for A (i.e., M: X -- C': f F-* (Ajf) for some basis (Aj)
for A). This implies that PHA is close to PH,,A' in case H' and A' have bases close to bases of H
and A respectively.

Concretely, we are interested in using linear functionals of the form

(4.2) r*: f '- (p(D)f)(0)= ZD"p(O)D'f(O)/a!

with p E r. These axe continuous linear functionals on A 0 and even on Ck(O) (over the complex
scalars). The map p '-4 -* is skew-linear and one-one, hence provides a skew-linear embedding of ir
in the dual of A 0.

(4.3) Proposition. For any finite-dimensional linear subspace H of A0 , the linear space V is
minimally total for H.

Proof: For any f E H\O, p := fj E HI and j5*f = I'*p > 0. This implies that the only
f E H with p*f = 0 for all p E VI is f = 0, i.e., W is total for H. On the other hand, since
dim/ = dim H1 = dim H, no proper subspace of H1 could be total for H.

We conclude that HI can be used to represent the dual of H.
Of course, there exist polynomial spaces other than HI that provide correct interpolation

conditions for H. The next result shows that, compared to all these spaces P, H1 is of least
degree in the sense that

(4.4) dim(H 1 7rj) > dim(P n 7rj) Vj.

(4.5) Theorem. Among all polynomial spaces P for which T is minimally total for H, H is of
least degree.

Proof: Let B be a basis for P n ir. Since T is minimally total for H, the sequence B must
be linearly independent over H. On the other hand, for any p E irj, -* = 5*T,+l. Hence, B* must
already be linearly independent over Tj+i(H). Therefore, with (3.6),

dim(H/ n irj) = dim Tj+(H) _ #B = dim(P nl 7rj).
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5. The construction of H,

Denote by TH the linear projector given by H and Y, i.e., the linear map characterized by the
fact that its range is H and that "i*THf = I'*f for all p E H1 . The following strong monotonicity
property will be of use in the construction of H, for specific choices of H.

(5.1) Proposition. If K = H + span{h}, then K 1 = H, + span{(h - THh)1 }.

Proof: There is nothing to prove in case h E H, so assume that h 0 H, hence k h - THh A 0,
therefore also k, $ 0, while ki E K 1 . Since H1 C K, and dim K 1 = dimK - dimH+ 1 =

dim H1 + 1, we therefore need only show that k, 0 H1.

For this, observe that, by construction, T*k = 0 for all p E H1 . Hence, from (3.8), '*k = 0 for
all homogeneous p E Hi. If now ki E H 1, then, in particular, k 1ki = 0, i.e., k, = 0, a contradiction.

4
This proposition suggests a simple Gram-Schmidt-like algorithm for the conversion of a basis

(pj) for H into a basis (qj) for H to which (rj) := (qjl) is bi-orthogonal with respect to the
(complex) pairing

(,):7r x Ao - C : (p,q) - j3*q,

hence provides the homogeneous orthogonal basis (rj) for H 1 . The idea is simple. Assume that we
have already determined such a basis (qj)j<k for Hk span (Pj) j <k. Then we compute

qk:(1- THk)Pk = Pk - q (rj-Pk)

j<k (r,,q)

and note that qk j 0 since Pk 0 Hk = ran TfHk. Consequently,

rk := qkt

is not zero, and (rk,qk) # 0. By (5.1)Proposition, we know that (Hk+1)l = span (rj)j<k. Also, by
construction,

(5.2) (ri, qk) = 0 j < k.

But there is, off-hand, no reason to expect that (rk, qj) = 0 for j < k. Of course, if deg rk < deg rj,
then we have (rk,qj) = 0 trivially. If degrk = degrj, then (rk,,q) = (rj,qk) = 0. But for
degrk > degrj, we may well have (rk,qj) - 0. In that case, we simply modify qj appropriately,
setting

(5.3) qj:=q1 -qk if degrk > degr j .
(rk, qk)

By (5.2), this does not change the bi-orthogonality of (rj)j<k and (qj)j<k. Also, since it modifies
qj at terms of order deg rk and higher, it does not change qj , i.e., it does not change the fact that
ri = q 1 forj < k. In this way, we have now at hand a basis of the promised sort for Hk+ .

For easy reference, we collect the result of the last paragraph in the following.
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(5.4) Algorithm. Given the basis (pj) of the finite-dimensional subspace H of Ao.

For k = 1,2,..., carry out the following three steps:

Step 1. qk - Pk- :qj (rj,Pk)

*<k (rjqj)

Step 2. rk - qk I
Step 3. qj +- qj-qk (rk,qj) if degrk > degrj.

(rk, qk)

Then (rj) is bi-orthogonal to (qj) and provides a homogeneous orthogonal basis for H1 .

For the calculations, it is useful to observe that only inner products with the homogeneous
polynomials rj are required. This means, in particular, that the calculation could be carried out
with Tmpk rather than Pk, for some m which is determinable a priori in case H is D-invariant.

Numerically, the calculation is challenging only because it requires the determination of the
least part rk of qk. When using finite-precision arithmetic, it may be necessary to replace 'least
part' by 'significant least part' in order to avoid use of a least part that turned out not to be zero
only because of the noise in the calculation. Concretely, this means that one takes rk to be the
homogeneous part of qk of lowest degree which is not significantly smaller than the corresponding
part of Pk. Considerations of this kind could be used to establish under what circumstances H,
depends continuously on H. In the next section, we choose to settle this question by a more direct
route.

6. Continuity of the map H '-4 H,

In the discussion later of Hermite interpolation as the limit of Lagrange interpolation, it will
be important to understand to what an extent H, depends continuously on H. Precisely, we wish
to know under what circumstances limt...0 (H(t)4 ) = (limt..o H(t))1. Since A0 is a metric linear
space, we use the gap between subspaces as a means of defining the statement H = limt-.o H(t).
For this, recall the standard definition of the gap

gap(H, K) := max{dist(H n B, K), dist(K n B, H)}

between subspaces H, K of the metric linear space X. Here, dist(Y, Z) := supVEy infZEz dist(y, z),
and B := Bi(0) := {z E X : dist(x,O) < 1}.

If H is, in particular, a finite-dimensional subspace, then H = lim H(t) iff, for some (every)
basis (h,) of H and all small enough t, there is a corresponding basis (h.(t)) for H(t) for which
hj = limt- 0 hj(t) for all j. For example, by (2.5),

(6.1) lim{h(t.): h E H} = H 1.
t-0

As an illustration of the possible lack of continuity in the map H '-. H1 , consider H(t) = expe(t)
with s = 2 and 0(t) := {(-1, 0), (0, t),(1,0)}. Then H(O) = limi-o H(t) and, for t $4 0, H(t), = 7r,
while H(O), = ir2(]R) 0 ()1'0. We will show that this example of a discontinuity is prototypical.

For want of a better word, we call the linear subspace H of A0 regular in case H, is of
least degree, i.e., dim H, n 7r, = max{dim H1 ,dim rm} for all m. Equivalently, H is regular iff
H, l rm = H, or Win, for all m. Thus, H is regular iff, for some m, r<, g H, C lrm. We note in
passing that this m provides the local approximation order of H.

The importance of this notion of regularity for the continuity of the map H '-4 H is illustrated
by the following.
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(6.2) Lemma. If each H(t) is re-, ilar and P =m H(t) I exists, then P is regular.

Proof: Since H(t)i converges, its dimension is eventually constant, and, since each is regular, this
implies the existence of some m so that, for all small t, each H(t), is scale-invariant and satisfies
?r<M C H(t)4 C 7rm, hence their limit P satisfies the same conditions. 4

(6.3) Lemma. The finite-dimensional subspace H is regular if and only if, for some regular,
scale-invariant polynomial space P, P* is minimally total for H.

Proof: Since (H) 1 = Hi, H is regular iff H is regular, hence (4.3)Theorem proves the "only
if".

For the converse, let P be a regular scale-invariant polynomial space. Then, with m such that
dim r<,m _ dim P < dim 7r,, we must have r<m _ P1 = P C 7r,,. Assume that T is minimally
total for H. Then H contains a dual set (ha) for ( c).<m' with p, := ()c. Consequently,

for all Ia],1013 < m, D'3 ha(O) = ca,6, for some c,, 0 0, hence hQ1 = c,()a. This implies that
r<m C Hi. To see that Hi C lrm, observe that, since 7- is total for H, we can find, for any

h E H\0, some p E P so that T*h $ 0, and, since P C rm, this implies that h i E lr,. 4

(6.4) Theorem. The set of regular (finite-dimensional) subspaces of Ao is open and dense (in the
space of all finite-dimensional subspaces, and in the "gap topology").

Proof: Assume that H is regular. We have to prove that all K in some neighborhood of H are
also regular. But this follows from (6.3)Lemma and from the fact that if A is minimally total for
H, then it is minimally total for all nearby K. This proves that the set of regular H is open.

To prove that the set of regular subspaces is dense, let H be an arbitrary finite-dimensional
subspace and let P be an arbitrary regular scale-invariant polynomial space of the same dimension
as H. Consider the map R - P --* H' : p I- T*1H" If R is 1-1, H itself is regular, by (6.3)Lemma.
Otherwise, choose an orthonormal basis (rj)n for P whose first m terms span kerR. Then H
contains a dual set (hj for (r3 )n+l, and this can be extended to a basis (hi)n for H. Define

ki := hj + crj, all j. Then
{ ij, i,j m;

(ri, kj) -- 0, i < m < j;

(1+ E)6,i,j > m,

i.e., the matrix ((ri,kj))ij=l is lower block triangular with diagonal blocks elm and (1 + c)I.,,,,,

hence invertible for all positive c. Consequently, P is minimally total for K := span (hj + Erj)I,
for all positive E. This shows, with (6.3)Lemma, that every neighborhood of H contains regular
subspaces. A
Remark. The proof actually shows that, in the set of all n-dimensional subspaces of A0, those for
which a fixed regular polynomial space is minimally total form an open and dense set.

(6.5) Corollary. The map H -4 H, is continuous at H if and only if H is regular.

Proof. Assume that H -+ Hi is continuous at H. By (6.4)Theorem, we can find regular H(t)
with limt-.0 H(t) = H, hence, by the assumed continuity, H1 = limt-.0  (t)4 , thus H is regular by
(6.2)Lemma.

For the proof of the converse, assume, more precisely, that 7r<k C H1 C irk. By (3.2)Lemma,
this implies the existence of a continuous linear projector Tk,H-t on A0 onto H which preserves
Taylor polynomials of degree < k, i.e., which satisfies TkTk,H = Tk. Since Tk,H is a continuous
linear projector, it carries any subspace K sufficiently close to H 1-1 onto H. Consequently, for
every f E H, we can find in every such K an element g close to f which satisfies Tkg = Tkf. In
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particular, gI = fj in case deg f, < k, hence r<k C K, for any such K. Further, if deg f, = k, then
Tkg = 0, i.e., degg, k, hence, since g is close to f, degg1 = k and g, is close to fl. This shows
that, for such K and every p E H1 , there is some q E K1 close to it, and, since dim K, = dim H,
for such K, it follows that K, and H1 are also close. 4

7. Hermite-Birkhoff interpolation

In this section, we consider interpolation by polynomials using interpolation conditions of the
form [O]p(D), with [0] the linear functional of point evaluation at 0 and p a polynomial. More
precisely, we want to interpolate from some polynomial space Q, using the interpolation conditions

(7.1) A := A(;(P,)) := E[O]P,(D) := {[O]p(D) : p E Pa}.
a a

For the analysis of this problem, observe that, in terms of (4.2),

(7.2) [Ojp(D)q = p'E'q = q*(eep), Vp, q E ir.

This implies that our interpolation problem, as specified by Q and A = A(O;(Pe)), is correct if
and only if the dual problem of interpolation from H := Eo eOPO with interpolation conditions
Q" is correct. Therefore, (4.5)Theorem provides the following conclusions.

(7.3) Theorem. Given any finite set 0 C C0 and corresponding finite-dimensional polyno-
mial spaces P9 for 0 E 0, let H := E eqPa. Then H I is a polynomial space of least degree
among all polynomial spaces from which interpolation with interpolation conditions A(E; (P9))
span{[O]p(D) : p E Pa; 0 E E)} is correct.

In univariate Hermite-Birkhoff interpolation [LJR], one matches certain derivatives rather than
linear combinations of derivatives. Correspondingly, we will use the term Hermite-Birkhoff in-
terpolation in the multivariate context of (7.3)Theorem in casc all the spaces Pa have a homo-
geneous basis, i.e., are scale-invariant. If all the spaces Pe are, in addition, D-invariant, then we
speak of Hermite interpolation.

If each P9 is D-invariant, then so is H :- eaPe, therefore, by (3.12), so is H1 . In the
univariate case, it follows that H1 = 7r for some k, since rk is the only D-invariant polynomial
space of dimension k + 1. Thus we obtain the wellknown fact that univariate Hermite interpolation
from 7rh with k + 1 conditions is always correct.

8. Lagrange interpolation

The special case
0 C R, Pe = ro,VO

in (7.3)Theorem is particularly striking. The claim here is that, with

exp o := span(eO)0Eo,

the polynomial space
l'e := (expe)1

is of least degree among all those from which interpolation at E) is uniquely possible. (We are using
the fact that, for this case, H = H.) See (3.14) for a recipe for generating ire.
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(8.1) Example. As a simple illustration, consider s = 2.
For #0 = 1, ;e = To.
For #0 = 2, re = ri(IR) o (X.), with A any nonzero vector parallel to the affine hull of 0.
For #0 = 3, re = ; 2 (IR) 0 (A.), with A any nonzero vector parallel to the affine hull of 0, in

case that hull is a line. Otherwise, re = rl.

For #0 = 4, re = r 3(IR) o (A.), with A any nonzero vector parallel to the affine hull of 0, in
case that hull is a line. Otherwise, r, C re C ;2. In that case, we can compute the barycentric
coordiniates of one point with respect to the other three, say 04 = 3 a(j)Oj with Ej3 a(j) = 1.
On setting a(4) = -1, we thereby obtain the (essentially unique) quadratic homogeneous element

I a(j)(Oi.) 2 of re. Note that its span is a continuous function of 09 except when the four points
become collinear. since expe fails to be regular only in that case.

For the particular choice E0 = {0,0,r, 0+r} with 0 = el,r = ae 2 , the quadratic term becomes

((el-) 2 + (ae2 .) 2 - ((el + ae2).) 2 ) =

hence re = rl,1, the space of bilinear polynomials. Correspondingly, the interpolation at 0 from
re is, in this case, the tensor product of linear interpolation, as one would hope. 4

We now consider how re changes with 0. Since ee+, = e~e, we conclude from (3.7)Proposi-
tion that

(8.2) re+a = re, Va E I.

Further, since the limit at 0 of any H C A0 does not change under scaling,

(8.3) 7rae = 7re, Va E I\0.

Both of these facts could also be deduced directly from (3.14). More generally, if A is any matrix,
then eAG = e o AT, hence, by (2.3),

wrAe -" we a AT

for any invertible matrix A.
More substantial changes in 0 may change re substantially. In fact, the map 0 -- re has

jumps, as can be expected from (6.5)Corollary. The simplest possible example occurs with s = 2
and #0 = 3 (cf. (8.1)). Here re = wr except when 8 is collinear, in which case re = wri( R) o (A.)
for any A not zero and parallel to the affine hull of 0. In terms of the Gram-Schmidt algorithm
(5.4) for the construction of 7re = (expe)1, these jumps are due to the fact that, as 0) changes, the
degree of some qkI may jump even if we arrange the starting basis (pj) for re in such a fashion
that the degree of each qk I is as small as possible.

Connected with this is the fact that, near a E) at which the map jumps, our interpolation
scheme is badly behaved. Put positively, in that case, it is a much stabler thing to use re when
matching data at some 0' near such 0, rather than using re'. Thus in our simple example, it would
be better to interpolate at 0 from rl(R) o (A.) in case the points in 0 are 'nearly collinear', rather
than from re itself. In terms of the Gram-Schmidt algorithm (5.4), one would reject a 'near-zero'
least term in favor of the next non-zero homogeneous term.

It seems natural to use (ee)OEe in the role of the initial basis (pj) in the Gram-Schmidt
algorithm (5.4), making use of the fact that only the first few terms in the Taylor expansion of Pk
are needed.

We can also use induction to construct the unique Ief E re which agrees with f at 0, thereby
obtaining its Newton form. For r 0 0, this gives

Ieurf = Ief + (I- Ie)f(r)
(1-(I Ier~r),
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with r, := (e1 - Tee,), the least term of the error when interpolating e, from expe with respect
to (re)*. For, r, E lreu.\re by (5.1)Proposition.

9. Osculation and coalescence

Our interpolation scheme Ie depends on 0 nicely enough to allow for the existence of a limit
when some or all of the points in 0 coalesce in a nice enough manner. In that case, the limiting
situation often is Hermite interpolation, in the sense defined in Section 7.

Given that le is characterized by 7re and expe, it is natural, in light of the remarks following
(4.1)Lemma, to study the limiting situation by considering the limits (if any) of these two spaces,
as 0 approaches some limiting set T.

In the univariate case, ire = ir<#e, hence it does not change (assuming that 0 converges).
Further, expe converges to

eXPT,#T : er<#.r
TET

with #r the multiplicity of r, i.e., the number of points from 0 which coalesce at r. In particular,
the limit always exists and does not at all depend on just how 0 approaches T.

The multivariate situation is much more complicated. Neither re nor expe need to converge.
If, for example, s = 2 and 0 = {0, 0} and 0 alternates between the two axes as it approaches 0, then
ire alternates between the span of 00 , ()1,0 and the span of 00 , 00,1, hence does not converge. Even
if ire and expe converge, their limits strongly depend on the manner in which 0 approaches T. If,
for example, 0 = 0't + o(t) in the earlier example, then limt-0 re = rl(Ilt) o (0'.) = limt-o expe.

Here is a more striking example. We take again s = 2, but take 0 = 0(t) = 10,(t,O),(t1,t3)}.
Then 0 is in general position, hence ire = irl, therefore also limt-0 Ire(t) = 7ir. Further, each expe
contains 00. In addition, expe contains t'(e(t,o) - 1) t 01,0. Finally, expe contains

t-3 (e(,P - t(,, - (1 - t)) _ 0-,1 -o2,0

Since expo is three-dimensional, this shows that

lir expe = span (00,010,0()1 - 02,0) # ir, = lim ire.t-0

In particular, lim exp, is not even scale-invariant, hence the resulting limiting interpolation scheme
is not Hermite or Hermite-Birkhoff interpolation by our earlier definition. Also, lim 7re fails to
equal (limexpe)l. But limexpe is D-invariant (as it has to be since each exp e is D-invaiant).

We postpone a full discussion of the general situation to a future paper and content ourselves
here with the following very simple case.

We assume that, more precisely, 0 = 0(t) consists of the points 0(t), with 0(t) = 0(0) + 0'(0)t.
Consider first the special situation that G(0) consists of one point only. Then, in considering
limt-o exPe(t), we may as well assume that 0(0) = {0} (see (8.2)), hence 0(t) = Et, with E- :=

{0'(0) :0 E 0}. Consequently, from (6.1), rm = (exp.) 1 = limt-oexp-t, while rat = rV. This

implies

(9.1) limrare(t) = r= = limexpe(t)

in this simple situation.
The same argument handles the slightly more general situation described in the following

proposition.

12



(9.2) Proposition. Assume that each 6 E E = 0(t) is of the form 00 + O1t. Then, for each
r E T := {o :0 E 0}, the set E. {1 : 00 = r) has as many elements as there are 0 E E with
00 = r, and limexpe = -rET el.r-T.

Proof: The exponential space expq is the direct sum of the spaces e1, exp_-,t and these converge
to e1 r=.,, by the earlier argument. A

(9.3) Corollary. If, in addition, limexpe is regular, then le converges (e.g., pointwise on ir) to
Hermite interpolation from P := (limexp9), with interpolation conditions TrT(r]r-- (D).

Proof: From (6.5)Corollary, we conclude that the assumed regularity of lim expe ensures the
convergence of ire to P, and the rest follows from the remarks following (4.1)Lemma. 4

We have concluded from (6.1) that the exponential space expte approaches the polynomial
space ire as t --f 0. This polynomial space is finite-dimensional, scale-invariant, and D-invariant.
It would be very nice to know whether every finite-dimensional scale- and D-invariant polynomial
space arises in this way. For it would then be possible to view all (regular) osculation as coalescence.
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